

### REQUEST FOR ACTION (RFA) RESPONSE

### GLAST LAT Project Calorimeter Peer Review

17 – 18 March 2003

| Action Item:                 | CAL – 009    |
|------------------------------|--------------|
| <b>Presentation Section:</b> | Thermal      |
| Submitted by:                | Tom McCarthy |

**Request:** Parts thermal analysis - Update Board level analyses using vacuum

rated parts parameter, i.e., theta-jc, theta-cl, etc.

Reason / Board level analysis used theta-ja to tie component to board. The use of theta-ja an ambient part parameter, to represent the part in vacuum

of theta-ja, an ambient part parameter, to represent the part in vacuum may not be conservative. For vacuum/space application analysis, each part must be considered using theta-jc and how is part tied to board,

i.e., through lead and/or is it bonded?

#### Response: 18 April 2003

Analysis was rerun using the theta-jb (junction to board), which accounted for theta-jc (junction to case) and theta-cb (case to board).

The attached view graph corrects the board level thermal analysis summary that was presented at the Peer Review (page 7-38) to address the request of this RFA.

The AFEE Thermal Study report will be updated to add this information.



## **AFEE Thermal Analysis**

- AFEE Thermal Analysis Summary. Dated 4/03 Author Peck Sohn, Swales **Aerospace**
- Table of maximum silicon die temperature for 25 C Base Plate temperature

| Device                          | GCRC | GCFE | ADC  | DAC  | Ref. |
|---------------------------------|------|------|------|------|------|
| Die Junction Temp.<br>Degrees C | 36.7 | 33.5 | 33.8 | 33.8 | 35.1 |

7 - 1

Analysis result, Calorimeter AFEE electronics do not have any thermal problems Assumptions

| 28.3 | 30.1 |                                 | 28.0 |
|------|------|---------------------------------|------|
| 29.5 | 32.4 | Modeled<br>AFEE Board           | 29.0 |
| 29.7 | 33.3 | Temperature, Degree C,          | 29.1 |
| 28.9 | 31.8 | for 25 C<br>Base Plate<br>Temp. | 28.4 |
| 26.8 | 29.1 |                                 | 26.6 |

|                      | Modeled Heat<br>Dissipation | Theta<br>Junction to<br>Board (C/W) |  |  |  |
|----------------------|-----------------------------|-------------------------------------|--|--|--|
| GCRC                 | 65 mW                       | 50                                  |  |  |  |
| GCFE                 | 11.5 mW                     | 114                                 |  |  |  |
| ADC                  | 2 mW                        | 183                                 |  |  |  |
| DAC                  | 4 mW                        | 86                                  |  |  |  |
| Ref.                 | 7 mW                        | 232                                 |  |  |  |
| Total Power per AFEE | 952 mW                      |                                     |  |  |  |
|                      |                             |                                     |  |  |  |

AFEE PCB, Qty 2 of 1.4 mil thick Copper Thermal Plane Layers. Naval Research Lab

Washington DC



# **AFEE Thermal Analysis**

- ☐ AFEE Thermal Analysis Summary. Dated 4/03 Author Peck Sohn, Swales Aerospace
- □ Table of maximum silicon die temperature for 50 C Base Plate temperature

| Device                          | GCRC | GCFE | ADC  | DAC  | Ref. |
|---------------------------------|------|------|------|------|------|
| Die Junction Temp.<br>Degrees C | 61.3 | 58.2 | 58.5 | 58.4 | 59.7 |

Analysis result, Calorimeter AFEE electronics do not have any thermal problems

| 53.2 | 55.0 |                            | 53.0 |
|------|------|----------------------------|------|
| 54.3 | 57.1 | Modeled<br>AFEE Board      | 53.9 |
| 54.5 | 57.9 | Temperature, Degree C, for | 53.9 |
| 53.7 | 56.5 | 50 C Base<br>Plate Temp.   | 53.2 |
| 51.7 | 53.9 |                            | 51.5 |



J. Ampe 7 - 2